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Abstract —An iterative domain decomposition method is 
applied to numerical analysis of 3-Dimensional (3D) nonlinear 
magnetostatic problems taking the magnetic vector potential as 
an unknown function.  The iterative domain decomposition 
method is combined with the Preconditioned Conjugate Gradient 
(PCG) procedure and the Hierarchical Domain Decomposition 
Method (HDDM) which is adopted in parallel computing. Our 
previously employed preconditioner was the Neumann-Neumann 
one.   Numerical results showed that the preconditioner was only 
effective for smaller problems. In this paper, we consider its 
improvement with the Balancing Domain Decomposition (BDD) 
like preconditioner. 

I. INTRODUCTION 
Among various parallel computing techniques, the 

Domain Decomposition Method (DDM) is a promising one in 
solving 3-Dimensional (3D) nonlinear magnetostatic problems 
with the magnetic vector potential A as an unknown function. 
In general DDM decomposes the whole domain into 
independent subdomains. Different methods can be chosen for 
solving the equations employed on these subdomains. On the 
other hand, DDM needs an iteration process in solving the 
interface problem to obtain the final solution.  The nonlinear 
simultaneous equations are solved with the Newton iteration 
[1].  In this work, for simplicity, we focus our attention on  the 
linear equation solving at each nonlinear iteration. We have 
also adopted a perturbation problem to explain conveniently 
the problem, for simplicity. Owing to this technique, a direct 
method can be used to solve the matrix equations on 
subdomains and a Preconditioned Conjugated Gradient (PCG) 
method can be used for the interface problem.  In the overall 
parallel computing of the linear equation, the Hierarchical 
Domain Decomposition Method (HDDM) [2] is used. 

The performance of the perturbation problem with the 
direct solver was successfully compared with the InComplete 
Conjugate Gradient (ICCG) method to solve subdomain 
problems [3]. Our employed CG preconditioner was the 
Neumann-Neumann one. For small number of subdomains, 
this preconditioner was suitable. But due to the absence of a 
coarse problem, the convergence with the preconditioner 
decayed rapidly for large number of subdomains. An 
investigation of the preconditioner for large scale 3D 
magnetostatic problems with large number of subdomains 
produced no effective result so far. This is an important 
problem that we are currently working on.  

This extended abstract is arranged as follows. Iterative 
domain decomposition method is described in Section 2. The 
interface problem with the Neumann-Neumann preconditioner 

and the Balancing Domain Decomposition (BDD) like 
preconditioner is discussed in Section 3.  

II. ITERATIVE DOMAIN DECOMPOSITION METHOD 

We consider 3D nonlinear magnetostatic problems using 
the A method and the Newton method, see [1]. Then, we 
introduce an iterative domain decomposition method to this 
method. Let us denote the linear finite element equation of the 
A method by the matrix form as follows: 

fKu =                                         (1) 
where K denotes the coefficient matrix, u the unknown vector, 
and f the known vector. 

The polyhedral domain Ω is partitioned into the non-
overlapping subdomains. Then the linear system (1) is 
rewritten as follows: 
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where the subscripts I and B correspond to the nodal points in 
the interior of subdomains and on the interface boundary. 

At first the unknown vector uB is obtained from the 
algorithm based on the CG method to the interface problem, 
see [1]. After solving uB, the unknown uI is obtained from: 

BIBIIII uKfuK −= .                            (3) 
The vector uI can be solved independently in each subdomain. 
Hence we can get the unknown u in the whole domain. 

In the previous studies [1], the vector uI was solved by the 
ICCG method, because the finite element equation of the A 
method that neglects the Lagrange multiplier p is singular. 
Since the perturbation problem is considered in this paper, for 
simplicity, the direct method is used to solve the equations in 
subdomains. 

III. PRECONDITIONERS  

We then consider a non-overlapping partition of the 
domain Ω, consisting of subdomians, also called substructures 
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where N is the number of subdomains and ГE is the essential 
boundary of the domain Ω. For the given magnetic reluctivity, 
the finite element discretization gives a symmetric positive 
definite linear system in the perturbation problem.  The 
Degrees Of Freedom (DOF) inside subdomains are eliminated 
in parallel by using any direct method. We are then left with a 



linear system involving only DOF on Γ.  If a local vector in 
Ω(i) is divided into two subvectors; DOF corresponding to 
edges inside  and on , respectively, the local 
stiffness matrix of  K(i) can be written as  
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Here, ( )iZ  is dim ( ) )(ii mW ×

))(iW
 matrices of full column rank 
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Let  be the space of interface DOF for the subdomain 
 and W  be the space of all DOF on Γ. After eliminating 

DOF inside subdomains, the original problem reduces to a 
problem with smaller dimension; 

( )iW
( )iΩ

Setting of a suitable ( )iZ  is a crucial point in the BDD 
approach. 

In this work, we formally follow the above BDD 
algorithm for the original problem (not for the perturbed 
problem) and construct a BDD like preconditioner. Then our 
construction of ( )iZ  is as follows: 
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Step 1:  Select one nodal point  (a midpoint on one side of a 

tetrahedral element) on which the interface DOF is defined. 
jP 

where  is the global Schur complement 

matrix related to Γ and 
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g  is the resultant right hand side 
vector. We define the operators: 

 
Step 2: Denote two vertexes whose midpoint is  as  and 

. 
jP 1+jP

1−jP 
( ) ( ) ( ) ( ) ( ) .WW:R,WW:S,WW:S ii

B
iii →→→   

 Step 3: Construct the row vector of )(iZ  corresponding to the 
nodal point  , whose DOF are edge components of the 

Nedelec element,  as grad 
jP

1+jϕ  + grad 1−jϕ , where 1+jϕ  or 

1−jϕ  is a piecewise linear basis function with respect to a 

vertex  or , respectively. 1+jP 1−jP
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 is the transpose of . The local Schur complement 
 is defined as 
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The problem (6) is solved by a PCG method which requires to 
solve the following auxiliary problem: IV. CONCLUDING REMARKS 

Using a purturbation technique, an iterative domain 
decomposition method was previously applied to 3D nonlinear 
magnetostatic problems [3].  In the present research, it is very 
important for us to reduce number of iterations and 
computation time. As one possibility, we are trying to 
implement the Neumann-Neumann preconditioner with a 
coarse problem which has been successfully used in structural 
analysis, thermal analysis and incompressible viscous flow 
analysis, see [5] for example. For magnetic field problems, the 
similar approach in this paper is expected to be effective. 
Numerical results will be shown in the conference. 

 
rMz 1−=                                 (8) 

 
where r is the residual of (6) and M is a preconditioner.  In the 
previous research [3], we tried to implement the Neumann-
Neumann preconditioner without a coarse problem.  Due to 
the absence of the coarse problem, it was restricted for 
problems with small number of subdomains. A BDD like 
preconditioner, that is, the Neumann-Neumann one with a 
coarse problem is the present challenge of this research. 

The Neumann-Neumann preconditiner can be rewritten 
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where P is the S-orthogonal projection onto a subspace U of 
W defined by  
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